On polynomial collocation for second kind integral equations with fixed singularities of Mellin type
نویسندگان
چکیده
We consider a polynomial collocation for the numerical solution of a second kind integral equation with an integral kernel of Mellin convolution type. Using a stability result by Junghanns and one of the authors, we prove that the error of the approximate solution is less than a logarithmic factor times the best approximation and, using the asymptotics of the solution, we derive the rates of convergence. Finally, we describe an algorithm to compute the sti ness matrix based on simple Gauÿ quadratures and an alternative algorithm based on a recursion in the spirit of Monegato and Palamara Orsi. All together an almost best approximation to the solution of the integral equation can be computed with O(n[logn]) resp. O(n) operations, where n is the dimension of the polynomial trial space.
منابع مشابه
A Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases
In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...
متن کاملExpansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind
In this paper, the Bernstein polynomials are used to approximate the solutions of linear integral equations with multiple time lags (IEMTL) through expansion methods (collocation method, partition method, Galerkin method). The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is car...
متن کاملThe piecewise polynomial collocation method for nonlinear weakly singular Volterra equations
Second-kind Volterra integral equations with weakly singular kernels typically have solutions which are nonsmooth near the initial point of the interval of integration. Using an adaptation of the analysis originally developed for nonlinear weakly singular Fredholm integral equations, we present a complete discussion of the optimal (global and local) order of convergence of piecewise polynomial ...
متن کاملEvaluating the solution for second kind nonlinear Volterra Fredholm integral equations using hybrid method
In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applica...
متن کاملEvaluating the solution for second kind nonlinear Volterra Fredholm integral equations using hybrid method
In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 94 شماره
صفحات -
تاریخ انتشار 2003